INSTALLATION, OPERATION, AND MAINTENANCE INSTRUCTIONS FOR CLOSE COUPLED KWP PUMP
INSTALLATION, OPERATION, AND MAINTENANCE INSTRUCTIONS
FOR CLOSE COUPLED KWP PUMP

PREFACE: The instructions apply to Carver Pump Company close coupled KWP pumps with a JM shaft extension. They are designed for use with standard NEMA motors in industrial, commercial, chemical, and pollution control applications. All wetted surfaces are available in bronze, iron, or 316 stainless steel.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section/Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. GENERAL DESCRIPTION AND SAFETY</td>
<td></td>
</tr>
<tr>
<td>PRECAUTIONS</td>
<td>1</td>
</tr>
<tr>
<td>A. Nameplate</td>
<td>1</td>
</tr>
<tr>
<td>B. Safety Precautions</td>
<td>1</td>
</tr>
<tr>
<td>II. INSPECTION AND STORAGE</td>
<td>1</td>
</tr>
<tr>
<td>A. Inspection</td>
<td>1</td>
</tr>
<tr>
<td>B. Storage of Pump</td>
<td>1</td>
</tr>
<tr>
<td>III. INSTALLATION</td>
<td>1</td>
</tr>
<tr>
<td>A. Location</td>
<td>2</td>
</tr>
<tr>
<td>B. Handling</td>
<td>2</td>
</tr>
<tr>
<td>C. Foundation</td>
<td>2</td>
</tr>
<tr>
<td>D. Leveling of Unit</td>
<td>2</td>
</tr>
<tr>
<td>E. Grouting</td>
<td>2</td>
</tr>
<tr>
<td>F. Piping</td>
<td>2</td>
</tr>
<tr>
<td>G. Auxiliary Piping Connections and Gauges</td>
<td>2</td>
</tr>
<tr>
<td>H. Motor</td>
<td>2</td>
</tr>
<tr>
<td>I. Direction of Rotation</td>
<td>2</td>
</tr>
<tr>
<td>IV. OPERATION</td>
<td>2</td>
</tr>
<tr>
<td>A. Prestart Cautions</td>
<td>2</td>
</tr>
<tr>
<td>B. Priming</td>
<td>3</td>
</tr>
<tr>
<td>C. Starting the Pump</td>
<td>3</td>
</tr>
<tr>
<td>D. Operating Checks</td>
<td>3</td>
</tr>
<tr>
<td>E. Stopping the Pump</td>
<td>3</td>
</tr>
<tr>
<td>F. Indefinite Shutdown</td>
<td>3</td>
</tr>
<tr>
<td>V. TROUBLESHOOTING OPERATING PROBLEMS</td>
<td>3</td>
</tr>
<tr>
<td>A. No Discharge</td>
<td>3</td>
</tr>
<tr>
<td>B. Excessive Power Consumption</td>
<td>3</td>
</tr>
<tr>
<td>C. Insufficient Discharge Pressure or Flow</td>
<td>4</td>
</tr>
<tr>
<td>D. Loss of Suction During Operation</td>
<td>4</td>
</tr>
<tr>
<td>E. Too Much Seal Housing Leakage</td>
<td>4</td>
</tr>
<tr>
<td>F. Vibration or Noise</td>
<td>4</td>
</tr>
<tr>
<td>G. Overheating</td>
<td>4</td>
</tr>
<tr>
<td>H. Speed Too Low</td>
<td>4</td>
</tr>
<tr>
<td>VI. MAINTENANCE</td>
<td>4</td>
</tr>
<tr>
<td>A. Field Inspection</td>
<td>4</td>
</tr>
<tr>
<td>B. Lubrication of Driver</td>
<td>4</td>
</tr>
<tr>
<td>C. Mechanical Seal</td>
<td>4</td>
</tr>
<tr>
<td>VII. SERVICE AND REPAIR</td>
<td>5</td>
</tr>
<tr>
<td>A. Preparations for Disassembly of Pump</td>
<td>5</td>
</tr>
<tr>
<td>B. Disassembly of Pump</td>
<td>5</td>
</tr>
<tr>
<td>C. Parts Inspection</td>
<td>5</td>
</tr>
<tr>
<td>D. Assembly of Pump</td>
<td>5</td>
</tr>
<tr>
<td>E. Replacement of Wear Ring</td>
<td>6</td>
</tr>
<tr>
<td>F. Parts Inventory Guide</td>
<td>6</td>
</tr>
<tr>
<td>G. Parts Ordering</td>
<td>7</td>
</tr>
<tr>
<td>VII. PARTS LISTS AND SECTIONAL VIEW DRAWINGS</td>
<td>7</td>
</tr>
<tr>
<td>IX. PUMP SERVICE RECORD</td>
<td>9</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wear Ring Clearance</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Recommended Spare Parts</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Parts List for Close Coupled KWP Pump</td>
<td>7</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sectional View for Close Coupled KWP Pump</td>
<td>8</td>
</tr>
</tbody>
</table>
I. GENERAL DESCRIPTION AND SAFETY PRECAUTIONS.

A. NAMEPLATE. A nameplate is attached to each pump. The data on the nameplate should be recorded and filed for easy reference. Nameplate data should be furnished to Carver Pump Company or its representative when ordering spare parts or requesting information.

B. SAFETY PRECAUTIONS. This manual contains descriptions and instructions which are the result of carefully conducted engineering and research efforts. The manual is designed to provide adequate instructions for the safe and efficient installation, operation, or maintenance of the pump. Failure or neglect to properly install, operate, or maintain the pump may result in personal injury, property damage, or unnecessary damage to the pump.

Variations exist in both the equipment used with these pumps and in particular installation of the pump and driver. Therefore, specific operating instructions are not within the scope of this manual. This manual contains general rules for installation, operation, and maintenance of the pump.

Observe all caution or danger tags attached to the equipment or included in this manual.

CAUTION

IMPORTANT SAFETY NOTICE

Installation, use, and operating of pumping equipment is affected by various federal, state, and local laws and the regulations concerning OSHA. Compliance with such laws relating to the proper installation and safe operation of pumping equipment is the responsibility of the equipment owner and all necessary steps should be taken by the owner to assure compliance with such laws before operating the equipment.

II. INSPECTION AND STORAGE.

A. INSPECTION. Upon receipt of the shipment, unpack and inspect the pump, driver assemblies, and individual parts to insure none are missing or damaged. Carefully inspect all boxes and packing material for loose parts before discarding them. Immediately report any missing parts or damage incurred during shipment to the factory and to the transportation company and file your "damage and/or lost in shipment" claim with the carrier.

B. STORAGE OF PUMP. If the equipment is not to be immediately installed and operated, store it in a clean, dry, well-ventilated place, free from vibrations, moisture, and rapid or wide variations in temperature.

Grease Lubricated Motor. Rotate the shaft for several revolutions at least once per month to coat the bearings with lubricant, retard oxidation and corrosion, and prevent possible false brinelling.

Consider a unit to be in storage when:

1. It has been delivered to the job site and is waiting to be installed.
2. It has been installed but operation is delayed pending completion of construction.
3. There are long (30 days or more) periods between operation cycles.
4. The plant (or department) is shut down for periods of longer than 30 days.

NOTE

Storage requirements vary depending on climatic environment, length of storage, and equipment. For storage periods of three months or longer, contact manufacturer for specific instructions. Improper storage could damage equipment and would result in non-warranty covered restoration or non-warranty covered product failure.

III. INSTALLATION.

A. LOCATION. The pump assembly should be installed as close to the fluid as possible. A short, direct suction pipe can be used to keep suction losses at a minimum. If possible, locate the pump so fluid will flow by gravity to the suction opening. The discharge piping should be direct with as few elbows and fittings as possible. The total net positive suction head available (NPSHA), which includes the suction lift and pipe friction losses, must be greater than the net positive suction head required (NPSHR) by the pump.

The pump assembly should be located in an area that will permit periodic inspection and maintenance. Head room and access should be provided and all units should be installed in a dry location with adequate drainage.
B. HANDLING.

CAUTION

Do not pick up the complete unit by the driver or pump shafts or eyebolts.

To lift a horizontal mounted unit, a hoist or suitable lifting device should be attached to each corner of base structure. Use a sling for pumps without baseplates. The individual driver may be lifted using proper eyebolts provided by the manufacturer, but these should not be used to lift the assembled unit.

C. FOUNDATION. The foundation should be 3 to 6 inches wider and longer than the baseplate, have a level surface, and be of sufficient mass to prevent vibration and form a permanent rigid support for the unit. The best foundations are concrete with anchor bolts of adequate size embedded in the foundation in pipe sleeves having an inside diameter 2-1/2 times larger than the bolt diameter. This will allow for accurate positioning of the unit. Keep the concrete surface clean, yet rough.

D. LEVELING OF UNIT. Lower unit onto foundation, positioning base structure so anchor bolts are aligned in middle of holes in base.

The base should be supported on metal shims or metal wedges placed directly beneath the part of the base supporting the most weight. The shims or wedges should be spaced close enough to give even support and stability.

Adjust metal supports or wedges until suction and discharge flanges are level.

CAUTION

Do not attempt to straighten the base by using the anchor bolts.

E. GROUTING. When suction and discharge flanges are level, the unit should be grouted using a high grade non-shrinking grout. The entire base should be filled with grout. Be sure to fill all gaps. ALLOW THE GROUT TO FULLY CURE BEFORE FIRMLY TIGHTENING THE FOUNDATION BOLTS.

F. PIPING. All piping should be independently supported near the pump so that pipe strain will not be transmitted to pump casing.

CAUTION

All piping connections must be made with the pipe in a freely supported state. Do not apply vertical or side pressure to align the piping with the pump flange.

The suction pipe must be air tight and sloped upward to pump flange to avoid air pockets which will impair pump operation. The discharge pipe should be as direct as possible using a minimum number of valves to reduce pipe friction losses.

Never use a straight taper (concentric) reducer in a horizontal suction line because air pockets may form in the top of the reducer and the pipe. Use an offset (eccentric) reducer instead.

Install a check valve and closing valve in discharge line and a closing valve in suction line. The check valve, between the pump and valve, protects pump from water hammer and prevents reverse rotation in event of power failure. Closing valves are used in priming, starting, and pump shut down. Pump must never be throttled by use of a valve in the suction line.

G. AUXILIARY PIPING CONNECTIONS AND GAUGES. In addition to primary piping connections, the pump may require other connections to the discharge and suction flange gauges, or baseplate drain connections. All these lines and gauges should now be installed.

H. MOTOR. See motor manufacturer instructions.

I. DIRECTION OF ROTATION. Correct pump rotation is indicated by an arrow on the adaptor. The standard direction of rotation, viewed from the motor end, is clockwise.

IV. OPERATION.

A. PRESTART CAUTIONS:

1. Before starting or operating the pump, read this entire manual, especially the following instructions.
2. Observe all caution or danger tags attached to the equipment.
3. Never run pump dry because the close running fits within the pump are water lubricated. Dry running may result in pump seizure.
4. Before starting the pump, fill the casing and suction line with liquid. The pump may be primed by using an ejector or vacuum pump.
5. Before starting a mechanical seal pump equipped with external flush lines, turn on seal water, and confirm the seal water is at sufficient pressure.
6. If excessive vibration or noise occurs during operation, shut the pump down and consult a Carver representative.

B. PRIMING. Since the liquid being pumped is used to lubricate various internal parts, dry running a centrifugal pump can result in extensive damage and possible seizing. It is, therefore, imperative that the pump be primed prior to initial start up and that prime must be maintained through subsequent start-stop cycles.

The priming procedure is different for positive and negative suction head systems. Follow the procedures listed below.

Positive Suction Head:
1. Open the vent on the highest point on the pump casing.
2. Open all suction valves.
3. Allow liquid to flow from vent hole until all air bubbles are vented. Then close vent.
4. The pump is now primed.

Negative Suction Head:
1. Install an ejector or vacuum pump on the vent at the highest point on the casing.
2. Close the discharge valve.
3. Open the suction valve.
4. Start the ejector or vacuum pump.
5. Allow liquid to flow until a continuous flow is exhausted from ejector. Then close valve to the vent.
6. The pump is now primed.

C. STARTING THE PUMP.
1. If unit is equipped with seal cooling lines, turn on seal cooling water.
2. Fully open suction valve.
3. Check pump for proper priming and lubrication.
4. Start the pump.
5. Slowly open discharge valve and adjust it to the operating conditions required (see pump nameplate for design point condition).

D. OPERATING CHECKS.
1. Check for undue vibration or noise. If any occurs and does not stop within a short period of time, turn off the pump. For determination of the cause and its remedy refer to troubleshooting in section V or consult Carver Pump Company.
2. Check and record differential head by deducting suction gauge reading from discharge gauge reading. In applications where suction lift is involved, add suction and discharge gauge readings. The head should be similar to the total dynamic head (TDH) that is stamped on the pump nameplate.
3. Check and record bearing temperature. It should not exceed 180 degrees F.
4. Check and record power input to the driver.

E. STOPPING THE PUMP.
1. Begin to partially close discharge valve.
2. Tag out and lock power to driver according to OSHA Standard 1910.147.
3. Completely close discharge and suction valves.
4. If unit is equipped with seal cooling lines, turn off external cooling water line to seal.

F. INDEFINITE SHUTDOWN. Relubricate bearings. Provide pump assembly with a protective cover. Remove casing plug to drain casing. Drain all piping if there is a possibility of liquid freezing.

V. TROUBLESHOOTING OPERATING PROBLEMS.

If you have followed the installation and starting procedures outlined in this manual, the pump should provide reliable service and long life. However, if operating problems do occur, significant time and expense can be saved if you use the following check list to eliminate the most common causes of those problems.

A. NO DISCHARGE.
1. Pump not primed.
2. Speed too low.
3. Required discharge head too high.
4. Suction lift higher than pump rating.
5. Clogged or plugged impeller.
6. Wrong direction of rotation.

B. EXCESSIVE POWER CONSUMPTION.
1. Speed too high.
2. Head lower than rating; pumps too much liquid.
3. Specific gravity or viscosity of liquid pumped is too high.
4. Mechanical defects:
 * Bent shaft.
 * Rotating element binds.
5. System head lower than design condition.
6. Incorrect impeller diameter.

C. INSUFFICIENT DISCHARGE PRESSURE OR FLOW.

1. Pump not primed.
2. Speed too low. Check driver.
3. Discharge head too high.
4. Suction lift too high.
5. Wrong direction of rotation.
6. Air leaks into suction piping, seal housing, or gaskets.
8. Impeller damaged.
9. Impeller running clearance too large.
10. Optional impeller wear ring clearance is excessive.
11. Insufficient suction line submergence.
13. Impeller diameter too small.

D. LOSS OF SUCTION DURING OPERATION.

1. Suction line leaks.
2. Water seal line plugged.
3. Suction lift too high.
4. Air or gases in liquid.
5. Air leaks into suction piping, seal housing, or gaskets.
6. Wrong direction of rotation.
7. Insufficient suction line submergence.

E. TOO MUCH SEAL HOUSING LEAKAGE.

1. Damaged shaft sleeve needs replacing.

F. VIBRATION OR NOISE.

1. Loose foundation bolts.
2. Defect in grouting.
3. Mechanical defects:
 * Shaft bent.
 * Rotating element binds.
4. Head lower than rating; pumps too much liquid.
5. Pipe strain - improperly aligned or supported piping.
6. Pump running at shut-off condition.

G. OVERHEATING.

1. Bearings:
 * Excessive grease.
 * Shaft bent.
 * Rotating element binds.
 * Pipe strain.
 * Insufficient bearing lubrication.
 * Incorrect type grease.
2. Seal housing:
 * Water seal line plugged.
 * Flushing water not circulating for mechanical seal.

H. SPEED TOO LOW.

1. Check motor.
2. Check electrical voltage.

VI. MAINTENANCE.

Generally the pumps do not need continuous supervision. Occasional visual checks are recommended. Data should be recorded for each pump to keep track of maintenance which has been performed and to note operational problems. A maintenance record sheet is provided for this purpose at the back of this manual.

A. FIELD INSPECTION. Shutdown is not required. Perform field inspection at regular intervals and cover the following procedures:

1. Check the suction and discharge pressures to establish differential head. It should conform to that stamped on the pump nameplate.
2. Check power input and speed of driver.
3. Check pumping temperatures.
4. Check pump for quiet running.
5. Check seal housing for increased leakage.

B. LUBRICATION OF DRIVER. See manufacturer's special instructions to be sure driver bearings are properly lubricated.

C. MECHANICAL SEAL. The mechanical seals used can vary according to power frame and shaft size. Consult mechanical seal manufacturer for any special instructions.

Keep a spare seal on hand if standby equipment is not available.

Causes of Failure or Leakage Between Seal Faces.

1. Scored or worn seal faces.
2. Stationary insert face not perpendicular to shaft axis.
3. Binding seal ring.
4. Wobbling rotating seal ring.
5. Cracked or broken stationary insert.
6. Shaft run out through seal housing.
7. Foreign matter between seal faces.
8. Loose or released setscrews.
9. Spring compression lost.
10. Mechanical seal improperly applied or installed.

VII. SERVICE AND REPAIR.

A. PREPARATIONS FOR DISASSEMBLY OF PUMP.

1. Read this entire section and study the sectional view drawings, figure 1, before disassembling the pump.
2. Lock out and tag the power to the driver.
3. Shut off all valves controlling flow of liquid to and from pump. Drain casing (1) by removing pipe plug (421). If necessary, flush pump to remove corrosive or toxic pumpage. Reinstall pipe plug in casing when fluid has completely drained. Disconnect piping and gauges as necessary.

CAUTION

Use of a hoist with adequate capacity is recommended.

B. DISASSEMBLY OF PUMP.

CAUTION

Use a two man lift or a hoist with adequate lifting capacity.

1. Disconnect tubing and tubing fittings as necessary.
2. Unbolt motor from base.
3. Remove nut (615) and lockwasher (856) from stud (830) on adaptor (71). Remove rotary assembly along with motor and take the items to a suitable work area.
4. Remove gasket (73) from backcover (11).
5. Remove impeller capscrew (24) and impeller washer (28). The best tool to remove impeller capscrew (24) is a hex wrench welded to a socket head. Impeller may now be pulled from shaft. Remove impeller key (32).
6. Remove mechanical seal (89), shaft sleeve (14), o-ring (89B), and slinger (40) from shaft.

C. PARTS INSPECTION.

1. Shaft sleeve surface must be smooth and free of pits and grooves. Replace if damaged. The shaft sleeve is slip fitted to the shaft for easy removal.
2. If the impeller shows excessive wear due to abrasion or corrosion, so that performance cannot be restored, it must be replaced.
3. Inspect mechanical seal faces, gaskets, o-rings and shaft sealing members. They must be nearly in perfect condition. Replace if necessary.
4. Check the wear ring clearance as follows:
 a. Measure outside diameter of front impeller hub (2) in three places.
 b. Measure inside diameter of wear ring (7) in three places.
 c. If difference between high reading of inside diameter of wear ring (7) and low reading of outside diameter of impeller (2) hub exceeds double the maximum clearances given in table 1, replace wear ring according to section VII, paragraph E. Refer to table 1 for factory wear ring clearance.

D. ASSEMBLY OF PUMP.

1. Reinstall slinger (40) on shaft next to adaptor (71). Install o-ring (89B) on shaft next to step on shaft.
2. Lubricate stationary element of mechanical seal (89) with petroleum jelly. Install stationary element of mechanical seal (89) in adaptor (71).
3. Lubricate outside of shaft sleeve (14) with petroleum jelly.
4. Reinstall mechanical seal (89) rotating element on shaft sleeve (14) and position rotary face approximately 1/8 inch from end of shaft sleeve (14) with large chamfer.
5. Install shaft sleeve (14) with rotating element of mechanical seal intact on shaft.

CAUTION

Use a new impeller capscrew (24) to secure impeller (2). Impeller capscrew (24) has a nylock feature and once used may not provide adequate security.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FACTORY STANDARD WEAR RING CLEARANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>85-200</td>
<td>0.019</td>
</tr>
<tr>
<td>80-200</td>
<td>0.019</td>
</tr>
</tbody>
</table>
6. Install impeller (2) and impeller washer (28) on shaft and secure with impeller cap screw (24).

CAUTION

Use a two man lift or a hoist of adequate lifting capacity.

7. Reinstall rotary assembly along with motor. Reinstall gasket (73) in back cover (11). Secure back cover (11) and adaptor (71) to casing (1) with nut (615) and washer (656) on studs (630).

8. Reinstall tubing and tubing fittings as necessary.

CAUTION

Use a two man lift or a hoist of adequate lifting capacity.

9. Return pumping unit to installation site. Reinstall pumping unit on its base and secure to base with foundation bolts.

10. Reconnect piping and gauges as necessary. Remove all tags from valves and switches. Open system valves. Reconnect power supply to motor.

11. Start pumping unit in accordance with section IV.

E. REPLACEMENT OF WEAR RING.

The KWP pump has a replaceable wear ring (7) inserted in the casing (1). Refer to table 4 for impeller and wear ring matched materials.

The clearance between the wear ring and impeller hub will increase with wear. Internal leakage will result and pump performance will decrease. The allowable clearance and method of measurement is described in paragraph C in this section.

The casing (1) must be removed from the base to replace the wear ring (7). To replace the wear ring (7) follow these steps:

1. Disconnect suction and discharge piping. Unbolt casing (1) from base and from adaptor (71) by removing nuts (615) and lockwashers (656) from studs (630). Set casing (1) aside. Remove impeller cap screw (24) and impeller washer (28). The best tool to remove impeller cap screw (24) is a hex wrench welded to a socket head. Remove impeller (1) and take case (1) and impeller (2) to a work area with access to machine shop equipment.

2. Remove setscrews (665) from wear ring (7). Remove the wear ring (7) from the casing (1). This can best be accomplished on a lathe. Take this work to a machine shop.

3. Inspect the impeller hub for damage.

4. Press the new wear ring (7) into casing (1). The beveled edge of the wear ring (7) is installed towards the impeller (2).

5. Drill and tap two holes 180 degrees apart along edge of wear ring (7). Secure new wear ring (7) to casing (1) by inserting setscrews (665) into these holes.

6. Place impeller (2) on an arbor and mount between centers in a lathe or a grinder. Indicate back of impeller hub to within 0.002 T.I.R. maximum to be sure the arbor and impeller are running square.

7. Turn the wear ring surface of impeller (2) until a 63 RMS or better finish is obtained.

8. Measure the outside diameter of the front impeller hub and record this value. See measurement instructions in paragraph C.

9. Mount the casing (1) with new wear ring (7) installed in a lathe. Indicate male rabbit to within 0.002 T.I.R. maximum.

10. Bore wear ring (7) to within the specified tolerance listed in table 1 over the recorded size of the outside diameter of the front impeller hub.

11. If replacing wear ring during parts inspection in accordance with Section VII paragraph C, reinstall casing (1) to base. Proceed to Section VII paragraph D for reassembly.

12. Install impeller (2) and impeller washer (28) on shaft and secure the impeller cap screw (24).

13. Reinstall casing (1) on base and secure with fastener. Reconnect suction and discharge piping.

F. PARTS INVENTORY GUIDE. To avoid unnecessary delays for maintenance, spare parts should be on hand for normal service. Most conditions may be covered if this guide is followed. For every one to three pumps, stock one spare parts set consisting of items listed in table 2. Part numbers listed in table 2 correspond to part numbers on the sectional view drawing, figure 1.

G. PARTS ORDERING. There are a variety of options available for these pumps. When ordering parts, prompt accurate service will be provided if you will tell Carver Pump Company the following information.

1. Serial number of pump (located on nameplate).
2. Part name (located on parts list).
3. Part number (located on sectional assembly).
4. Quantity of parts needed.
Carver Pump Company may ship an interchangeable part that is not identical in appearance or symbol. This is done only if the part has been improved. Examine parts carefully upon delivery before questioning factory or representative. Never return parts to the factory without authorization from Carver Pump Company.

If an impeller is ordered, specify diameter across blade tips. Be sure diameter was not trimmed further than diameter shown on Carver Pump Company records.

If a motor or motor parts are ordered, specify name of manufacturer and all other data on driver nameplate.

VIII. PARTS LIST AND SECTIONAL VIEW DRAWINGS.

This section contains listings of parts and corresponding sectional view drawings. Table 3 contains the parts listing for close coupled pumps. Figure 1 shows location of parts listed in Table 3.

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>ITEM NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Impeller</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Wear Ring</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>Shaft Sleeve</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>Impeller Capscrew</td>
</tr>
<tr>
<td>As req'd.</td>
<td>73</td>
<td>Gasket</td>
</tr>
<tr>
<td>2</td>
<td>89B</td>
<td>O-ring - Shaft Sleeve</td>
</tr>
<tr>
<td>1</td>
<td>89</td>
<td>Mechanical Seal</td>
</tr>
</tbody>
</table>

Table 2. Recommended Spare Parts

Table 3. Parts List for Close Coupled KWP Pump

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PART DESCRIPTION</th>
<th>ITEM NUMBER</th>
<th>PART DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Casing</td>
<td>2</td>
<td>Impeller</td>
</tr>
<tr>
<td>7</td>
<td>Wear Ring</td>
<td>11</td>
<td>Backcover</td>
</tr>
<tr>
<td>14</td>
<td>Shaft Sleeve</td>
<td>24</td>
<td>Impeller Capscrew</td>
</tr>
<tr>
<td>28</td>
<td>Impeller Washer</td>
<td>32</td>
<td>Impeller Key</td>
</tr>
<tr>
<td>40</td>
<td>Slinger</td>
<td>71</td>
<td>Adaptor</td>
</tr>
<tr>
<td>73</td>
<td>Gasket</td>
<td>89B</td>
<td>O-ring - Shaft Sleeve</td>
</tr>
<tr>
<td>89</td>
<td>Mechanical Seal</td>
<td>420</td>
<td>Pipe Plug</td>
</tr>
<tr>
<td>421</td>
<td>Pipe Plug</td>
<td>600</td>
<td>Capscrew</td>
</tr>
<tr>
<td>615</td>
<td>Nut</td>
<td>630</td>
<td>Stud</td>
</tr>
<tr>
<td>655</td>
<td>Lockwasher</td>
<td>656</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>665</td>
<td>Setscrew</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Sectional Assembly for Close Coupled
IX. PUMP SERVICE RECORD

Serial No. ___________________ Size and Type ______________ Make ________________

Cust.Order No._________________ Date Installed ________________________________

<table>
<thead>
<tr>
<th>Install. Date</th>
<th>Location</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PUMP RATING

Capacity (GPM) ___________________ Total Head (ft) ______________________________

Suction pressure ________________ Speed (RPM) _________________________________

Liquid _________________________ Temperature _________________________________

Specific Gravity ________________ Viscosity ________________________________

Impeller Diameter (inches) ________________________________

PUMP MATERIALS

Casing _________________________ Adaptor/backcover ____________________________

Bearing Frame _________________ Shaft _________________________________

Impeller ______________________ Impeller Nut ________________________________

Wear Ring ______________________ Mechanical Seal ____________________________

MOTOR DATA

Motor _________________________ Make ______________________ Serial No. __________

Type _________________________ Frame ___________________ AC or DC ______________

HP _________________________ RPM ______________________ Volts ________________

Phase _________________________ Cycles ________________________________
APPENDIX A
Recommended Torque Values (ft-lbs)

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Material</th>
<th>Steel (or otherwise noted)</th>
<th>316 Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼"-20</td>
<td></td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5/16"-18</td>
<td></td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>3/8"-16</td>
<td></td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>½"-13</td>
<td></td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>5/8"-11</td>
<td></td>
<td>83</td>
<td>97</td>
</tr>
<tr>
<td>¾"-10</td>
<td></td>
<td>105</td>
<td>132</td>
</tr>
<tr>
<td>7/8"-9</td>
<td></td>
<td>160</td>
<td>203</td>
</tr>
<tr>
<td>1"-8</td>
<td></td>
<td>236</td>
<td>300</td>
</tr>
<tr>
<td>Inspect Date</td>
<td>Repair Time</td>
<td>Repairs</td>
<td>Cost</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>

Notes:

__

__

__

__

__

__

__

__

__

__

__

__

__

__